
bc635PCI
Solaris 5-8

Developer’s Kit
8550-0007

User’s Guide
Rev A

(April 2002)

Datum Inc bc635PCI Solaris Developer’s Kit i

bc635PCI
SOLARIS DEVELOPER’S KIT

TABLE OF CONTENTS
SECTION PAGE

CHAPTER ONE
INTRODUCTION

1.0 General ... 1-1
1.1 Features .. 1-1
1.2 Overview.. 1-1

CHAPTER TWO
INSTALLATION

2.0 Hardware Installation... 2-1
2.1 Software Installation .. 2-1
2.2 Driver Compilation .. 2-1

CHAPTER THREE
DRIVER LIBRARY DEFINITIONS

3.0 General .. 3-1
3.1 Functions... 3-1

CHAPTER FOUR
EXAMPLE PROGRAMS

4.0 General .. 4-1
4.1 Program Functions .. 4-1
4.2 Example 1: GPS Packet 46 – Health Packet Sample.. 4-1
4.3 Example 2: 1PPS Interrupt Sample... 4-1

Datum Inc bc635PCI Solaris Developer’s Kit 1-1

CHAPTER ONE
INTRODUCTION

1.0 GENERAL

The bc635PCI Developer’s Kit is designed to provide a suite of tools useful in the development
of applications which access features of the bc635PCI Time and Frequency Processor. This kit
has been designed to provide an interface between the bc635PCI and applications developed for
Solaris 5, 6, 7, and 8 environments. In addition to the interface driver library, an example
program is provided, complete with source code, in order to provide a better understanding of the
kit features and benefits.

1.1 FEATURES

The salient features of the Developer’s Kit include:

� Driver interface library with access to all features of the bc635PCI.

� Example programs, with source, utilizing the interface library.

� User's Guide providing a library definition.

1.2 OVERVIEW

The Developer’s Kit was designed to provide an interface to the bc635PCI Time and Frequency
Processor in the 32/64 bit environments of Solaris 5, 6, 7, and 8. The example program provides
sample code, which exercises the interface library as well as examples of converting many of the
ASCII format data objects, passed to and from the device into a binary format suitable for
operation and conversion. The example programs were developed using discrete functions for
each operation, which allows the developer to clip any useful code and use it in their own
applications.

CHAPTER ONE

1-2 bc635PCI Developer’s Kit Datum Inc

This Page Intentionally Left Blank.

Datum Inc bc635PCI Solaris Developer’s Kit 2-1

CHAPTER TWO
INSTALLATION

2.0 HARDWARE INSTALLATION

Installation of boards is quite a bit simpler than in most bus architectures due to two factors:
geographical addressing, which eliminates the need for DIP switches and jumpers normally
required to select a 'base address' or interrupt level for plug-in modules; and auto configuration,
which allows the host computer to read the device ID and other configuration information
directly from the Open Boot PROM located on the card itself so that the host can select the
appropriate device driver automatically. The only thing the user has to do is pick a vacant slot
and plug the bc635PCI into it and installs the device driver. Be sure to consult the user
documentation that came with your particular workstation for any specific card installation
instructions.

2.1 SOFTWARE INSTALLATION

The loadable device driver provides a simple interface to the bc635PCI Time and Frequency
Processor (TFP) module. Two versions of the driver are available: compatible with Solaris 2.5.1,
Solaris 2.6 32bit operating systems and SunOS 7/8 64bit operation systems.
To install the driver, execute the eisinstall script found with this README file. Alternatively,
untar the package, which is the accompanying tar file EISbc635.tar and use the pkgadd command
to install the resulting package. Both the eisinstall script and the pkgadd command must be
installed as root. Reboot the computer after installing the driver in order to load the driver
cleanly.
This driver should work correctly in its current binary form with the need for recompilation.

The install script is shown below:
#!/bin/sh

Install easy script for EIS electronic delivered packages.
Copyright (C)1997, 2000, EIS Computers, Datum Inc

#
Run this simple script from the same directory as the EISbc635.tar file
you have received

PATH=$PATH:/usr/bin:/usr/sbin
export PATH

EPKG=EISbc635

tar xf EISbc635.tar

pkgadd -d . $EPKG

CHAPTER TWO

2-2 bc635PCI Developer’s Kit Datum Inc

2.2 DRIVER COMPILATION

The TFP module can generate interrupts, though they must be enabled by the user with an ioctl
request.

Compiling 32bit driver:
The following command lines will compile the stfp.c driver source code.
venus# cc -D_ KERNEL -c stfp.c
venus# ld -r -o stfp stfp.o

Copy stfp and stfp.conf files into the /usr/ kernel/ drv directory (note that the stfp.conf file is
necessary only if you want to use interrupt level different from the default). The driver is ready to
be installed using following add_ drv(1M) function.

venus# add_ drv -m '* 0666 root sys' stfp
Use modunload(1M) to unload the driver from the system. Use modstat(1M) to determine the
module-id.

venus# modunload -i module-id

Compiling 64bit driver:
The following command lines will compile the stfp.c driver source code.
venus# cc -D_ KERNEL –xarch=v9 –xcode=abs32 –xregs=no%appl –XO3 –c stfp.c
Copy stfp file into the /kernel/drv/sparcv9 directory

Datum Inc bc635PCI Solaris Developer’s Kit 3-1

CHAPTER THREE
DRIVER LIBRARY DEFINITIONS

3.0 GENERAL

The interface library provides functions for each of the programming packets supported by the
bc635PCI Time and Frequency Processor. In addition, functions are provided to both read and
write individual registers and dual port RAM locations on the card. To understand the usage and
effects of each of these functions, please refer to the User’s Guides provided with the hardware.

3.1 FUNCTIONS

The 'STFP' device driver supports the bc635PCI Time and Frequency Processor (TFP) module,
as well as the GPS version, the bc637PCI. The TFP supports time code decoding,
synchronization to an external 1pps (Pulse Per Second) signal, a free running mode, a real time
clock mode, and the GPS Satellite System. Several timing outputs, all synchronous with the
timing source, are provided, including an IRIG B time code signal, a 1pps, programmable
periodic, a time coincidence strobe, and a 1, 5, or 10 MHz clock.

The open (2), close (2), read (2), write (2), and ioctl (2) system calls are supported. Most TFP
functions, including the reading of the time, are accesses through the ioctl (2) call.

Read/ Write Calls
The only purpose for the read (2) call is to read a GPS data packet that was previously requested
with an ioctl (2) or write (2) call. These packets contain position, velocity, GPS system status,
and other GPS information. One GPS packet is read for each read (2) call. The maximum GPS
packet size is defined by STFP_ MAX_ READ found in 'stfpio. h'. Refer to the GPS
documentation for GPS packet details.
The packet data contains floating-point types as well as various integer types, but these elements
cannot be directly accessed when read into a char buffer because they are not properly aligned in
memory. To obtain access to the various types of GPS data elements, union structures are
generally used. For example, to extract a 4-byte float from the packet data, use the union shown
below. Copy four consecutive bytes of packet data into the fconv. uc[] array, starting with fconv.
uc[0] (since Sun workstations are big-endian machines,) then access the float data as fconv. f.

union {
float f;
u_ char uc[4];

} fconv;

Following a successful read(2) call, the read buffer will contain the packet length, ID, and data
bytes of the requested GPS data packet as described in the GPS documentation section
Communicating with the
GPS Receiver. Note that a successful read(2) call will return the number of bytes read which will
equal the packet length plus 1 (one for the packet length byte itself.)

CHAPTER THREE

3-2 bc635PCI Solaris Developer’s Kit Datum Inc

The write(2) call allows the user to send commands to the TFP. The TFP commands are used to
set the timing mode, time code format, and other TFP functions. Refer to the bc635PCI User's
Manual for TFP command details. The write buffer must contain the TFP command ID and zero
or more command data bytes. As with GPS packets, command data consists of various data types
that must be converted to a char array for the write(2) call. The maximum number of bytes used
for a command is defined by STFP_ MAX_ WRITE found in "stfpio. h". Most commands are
implemented with ioctl(2) calls, which are much simpler to use since they provide the
conversion of data to an array of chars as required. Since most TFP commands can be executed
with ioctl(2) calls, the only really useful function for the write(2) call is to execute the TFP
commands that write data packets to the GPS receiver. In fact, the write(2) call is the only way
to send GPS data packets to the GPS receiver. When write(2) is used to execute the Manually
Request Packet from GPS Receiver command (command 0x32 described in the
GPS documentation) and a response is expected (non-zero response packet ID), the write(2) call
puts the calling process to sleep until the response arrives. The driver will not call sleep() if the
user has directed the driver to send a signal on the occurrence of the INT_ PACKET (GPS packet
available) interrupt. The response packet can take 10's or 100's of milliseconds to arrive. The
read(2) call can then be used to read the response packet.

Ioctl Calls ioctl (fd, request[, arg])
The ioctl(2) request codes, as well as all the other defined constants listed below, are contained
in 'stfpio. h'. For most ioctl() functions, arg is a pointer to data either used by or returned by the
function.
Other functions either ignore arg or use it directly as an int value. In many functions, most of
which have request labels of the form SELXXX or CONTROLXXX, the int value selects some
option from a list of options defined in 'stfpio'.

Following each request code below is the arg type expected by the driver.

SELTIMINGMODE, int
Selects the TFP timing mode specified in the int arg.

SELTIMEFORMAT, int
Selects between the decimal and binary time formats. The decimal time format is characterized
by the TFP_ time structure. The binary time format is characterized by the TFP_ timeval
structure. These structures are declared in 'stfpio. h'.

TIMEREQUEST, int
EVENTREQUEST, int
The driver writes to the TIMEREQ or EVENTREQ register (the int value is ignored) which
causes time to be captured and held in the TIMEx or EVENTx registers. No time data is
transferred.

RDTIME, *struct stfp_time
RDEVENT, *struct stfp_time

LIBRARY DEFINITION

Datum Inc bc635PCI Solaris Developer’s Kit 3-3

Reads time from the TFP TIMEx or EVENTx registers assuming the time format is decimal.
Time is not captured with these requests.

RDTIMETV, *struct stfp_timeval
RDEVENTTV, *struct stfp_timeval
Reads time from the TFP TIMEx or EVENTx registers assuming the time format is binary. Time
is not captured with these requests.

RDTIMEREQ, *struct stfp_time
RDEVENTREQ, *struct stfp_time
These requests capture and read time from the TFP TIMEx or EVENTx registers assuming the
time format is decimal.

RDTIMETVREQ, *struct stfp_timeval
RDEVENTTVREQ, *struct stfp_timeval
These requests capture and read time from the TFP TIMEx or EVENTx registers assuming the
time format is binary.

WRSTROBE, * struct stfp_time
Writes time to the STROBEx registers assuming the time format is decimal. This request
disables the Strobe output while the STROBEx registers are written.

WRSTROBETV, *struct stfp_timeval
Writes time to the STROBEx registers assuming the time format is binary. This request disables
the Strobe output while the STROBEx registers are written.

SELTCFORMAT, int
Selects the time code input format.

SELTCMOD, int
Selects the time code input modulation type.

SETTIME, int
Manually sets the TFP major time assuming the time format is binary. The minor time is not
affected.

SETDECTIME, struct stfp_dec_tm
Manually sets the TFP major time assuming the time format is decimal. The minor time is not
affected

SETYEAR, int
Manually sets the TFP year.

SETPERIODIC, *struct periodic

CHAPTER THREE

3-4 bc635PCI Solaris Developer’s Kit Datum Inc

This request sets the Programmable Periodic output frequency and enables the 1pps synchronous
mode.

SETTIMINGOFFSET, int
Sets the TFP timing offset with the int arg value.

SELFREQUENCYOUT, int
Selects output frequency (1, 5, or 10 MHz).

CONTROLEVENT, int
This request performs a variety of functions relevant to the Event Time Capture feature.

CONTROLSTROBE, int
This request performs a variety of functions relevant to the Time Coincidence Strobe feature.

CAPUNLOCK, int
This request writes to the TFP UNLOCK register to release the Event Capture Lockout feature (if
enabled via CONTROLEVENT).

SETINTSIGNAL, int
Setup one or more interrupt sources to generate a signal (SIGUSR1) to the process making this
ioctl(2) call. The int arg is comprised of one or more interrupt source bits (defined in 'stfpio. h')
OR'ed together. The following ioctl(2) call would cause the driver to send a signal on the
occurrence of the Event Input and/ or Strobe Output interrupt.
The signal handler can use the RDINTSIGNAL request to find out which interrupt source(s)
caused the signal. An arg value of 0 will disable signals.
ioctl (fd, SETINTSIGNAL, INT_ EVENT | INT_ STROBE);

RDINTSIGNAL, *int
Use this request to find out which interrupt source(s) generated the last signal.
Use the SETINTSIGNAL request to enable signals. The driver automatically clears the
INTSTAT bits during its interrupt service routine.

RDINTSTAT, *int
CLRINTSTAT, int
These requests allow the user to read and clear bits in the TFP INTSTAT register. All INTSTAT
bits can be read, but only those bits that are not setup to generate a signal can be cleared. Use
these requests to poll for the occurrence of one or more interrupt source(s) instead of using
signals.

CONTROLTIMEBASE, int
This request performs a variety of time base control functions, such as oscillator disciplining and
jam-sync control, clock selection, etc.

SETDAC, int

LIBRARY DEFINITION

Datum Inc bc635PCI Solaris Developer’s Kit 3-5

Loads the TFP D/ A Converter with the int arg value.

RDDAC, *int
Reads the TFP D/ A Converter value.

SETDISCGAIN, int
Loads the TFP discipline gain.

REQGPSPACKET, int
This request is for users of the bc637PCI, the GPS version of the bc635PCI. The int arg contains
one of the GPS packet ID's supported with the Retrieve Packet from GPS Receiver command
(command 0x31). The TFP monitors and stores several commonly requested packets that the
GPS receiver broadcasts periodically to the TFP. These packets are available to be read
immediately. GPS packets that are not monitored by the TFP are requested from the GPS
receiver by the TFP. Since this task can take 10's or 100's of milliseconds, the driver puts the
calling process to sleep until the GPS packet becomes available. The driver will not call sleep() if
the user has directed the driver to send a signal on the occurrence of the INT_ PACKET (GPS
packet available) interrupt. The requested packet is read using the read(2) call.

GETDATA, struct getdata_t
Gets various data packets from the board. See ‘stfpio.h’ for the list of commands you can request
using this command.

SOFTWARERESET, int
Issues a software reset on the card.

SETTCOUTFMT, int
Sets the time code output format

SETGENTMOFFSET, struct tcgenoffset
Sets the generator time code offset

SETLOCTMOFFSET, struct loctmoffset
Sets the local time offset

SETLEAPSECEVENT, struct leapseconds
This command can be used in modes other than GPS mode for inserting or deletion of one leap
second.

SETCLKVAL, int
This command advance/retard the TFP internal clock. The TFP can adjust its clock up to 100
milliseconds per each second. Each count is equal to 10 microseconds.

SETGPSTMFMT, int

CHAPTER THREE

3-6 bc635PCI Solaris Developer’s Kit Datum Inc

Modify the time base in GPS mode. This command determines whether the board will correct
the received GPS time for leap second offset and events

SETGPSMDFLG, int
By default, the TFP directs the GPS receiver to Static Mode of Operation after the TFP is
tracking to GPS. This Command allows the user to disable this feature. See Packet 2C in the GPS
Manual for detail description on this feature.
This function should only be used when the TFP is in GPS Mode of Operation.

SETLOCTMFLG, int
Enables or disables the local time offset

SETYRINCFLG, int
This commands the TFP to enable or disable the auto incrementing of the Year at the beginning
of each year. The Year variable is stored into the EEPROM for reference.

SYNCRTC,
This command forces the TFP to Synchronize the RTC time to current time.

DISCBATT,
This command disconnects the RTC IC from the Battery after power is turned off. Upon power
on, the TFP automatically connects the RTC IC to the battery.

RDCONTROL, *int
Reads the Control register

SETCONTROL, int
Sets the Control register

Datum Inc bc635PCI Solaris Developer’s Kit 4-1

CHAPTER FOUR
EXAMPLE PROGRAM

4.0 GENERAL

The bc635pci.c is an example program that provides sample code, which exercises the interface driver
library as well as an example of converting many of the ASCII format data objects passed to and from
the device into a binary format suitable for operation and conversion. The example program was
developed using discrete functions for each operation, which allows the developer to clip any useful
code and use it in their own applications.

4.1 PROGRAM FUNCTIONS

Function open
Description Opens an instance of the device driver
Example int fd;

if ((fd = open ("/dev/stfp0", O_RDWR)) < 0)
{
printf("Error opening Device Driver Exiting");
_exit(1);
}

Function close
Description Closes the device driver
Example close(fd);

Registers pci_read_time
Description Reads the time in binary or decimal time format
Example struct stfp_time stm;

struct stfp_timeval tvTime;

/* Decimal Time Format*/
ioctl (fd, RDTIMEREQ, &stm);
printf (" Julian Time: %03d %d %02d:%02d:%02d.%06d Status: %x\n",

stm.tm.tm_yday+1, stm.tm.tm_year+1900,
stm.tm.tm_hour, stm.tm.tm_min, stm.tm.tm_sec, stm.usec, stm.status);

/* Binary Time Format */
ioctl (fd, RDTIMETVREQ, &tvTime);
printf ("Binary Time: %lu.%06ld status: %x ", tvTime.tv.tv_sec,
tvTime.tv.tv_usec, tvTime.status);

CHAPTER FOUR

4-2 bc635PCI Solaris Developer’s Kit Datum Inc

printf ("%s", ctime (&tvTime.tv.tv_sec));

Registers pci_read_event_time
Description Reads the event time in binary time format
Example ioctl (fd, RDEVENTTV, &tvTime);

Registers pci_set_strobe
Description Sets a strobe mode and time
Example ioctl (fd, CONTROLSTROBE, STROBE_SECUS);

ioctl (fd, CONTROLSTROBE, STROBE_USONLY);

Registers pci_set_control
Description Reads and sets the control register
Example ioctl(fd, RDCONTROL, &ctlreg);

ioctl(fd, SETCONTROL, ctlreg);

Command 0x10 pci_mode
Description Sets the timing mode
Example ioctl (fd, SELTIMINGMODE, MODE_TIMECODE);

Command
0x15, 0x16

pci_time_code

Description Sets the time code input format and modulation
Example ioctl (fd, SELTCFORMAT, TC_IRIGB);

ioctl (fd, SELTCMOD, MOD_AM);

Registers pci_out_freq
Description Sets the frequency output 1, 5, 10 MHz
Example ioctl (fd, SELFREQUENCYOUT, FREQ_10MHZ);

Command 0x11 pci_time_format
Description Sets the time format, binary or decimal
Example ioctl (fd, SELTIMEFORMAT, TIME_BINARY);

Command 0x14 pci_heartbeat
Description Sets the heartbeat mode and frequency
Example ioctl (fd, SETPERIODIC, &sper);

INSTALLATION

Datum Inc. bc635PCI Solaris Developer’s Kit 4-3

Command 0x13 pci_set_year
Description Sets the TFP year
Example ioctl (fd, SETYEAR, year);

Command 0x12 pci_set_time
Description Sets the TFP time in either binary or decimal format
Example ioctl (fd, SETDECTIME, dec);

ioctl (fd, SETTIME, tm_sec);

Command 0x17 pci_set_prop_delay
Description Set the time code propagation delay
Example ioctl (fd, SETTIMINGOFFSET, prop_delay);

Command 0x1A pci_sw_rest
Description Issues a software reset on the TFP
Example ioctl (fd, SOFTWARERESET, 1);

Command 0x1B pci_tc_out_format
Description Sets the time code output format
Example ioctl (fd, SETTCOUTFMT, TC_IRIGB);

Command 0x20 pci_set_clock_src
Description Sets the clock source, internal or external
Example ioctl (fd, CONTROLTIMEBASE, CLOCK_INTERNAL);

Command 0x1C pci_set_gen_off
Description Sets the generator time offset
Example ioctl (fd, SETGENTMOFFSET, &gen);

Command
0x1D

pci_set_loc_off

Description Sets the local time offset
Example ioctl (fd, SETLOCTMOFFSET, &loc);

Command 0x1E pci_set_leap_sec
Description Program the leap seconds into the TFP
Example ioctl (fd, SETLEAPSECEVENT, &leap);

CHAPTER FOUR

4-4 bc635PCI Solaris Developer’s Kit Datum Inc

Command 0x21 pci_ctl_jam_sync
Description Enable or disable the jam sync control
Example ioctl (fd, CONTROLTIMEBASE, JAMSYNC_DISABLE);

Command 0x22 pci_frc_jam_sync
Description Forces a jam sync on the TFP
Example ioctl (fd, CONTROLTIMEBASE, FORCE_JAMSYNC);

Command 0x24 pci_set_da_con
Description Loads the D/A converter
Example ioctl (fd, SETDAC, da_con);

Command 0x25 pci_set_gain
Description Sets the disciplining gain
Example ioctl (fd, SETDISCGAIN, dis_gain);

Command 0x27 pci_sync_rtc
Description Sync’s the RTC to current time
Example ioctl (fd, SYNCRTC);

Command 0x28 pci_dis_rtc
Description Disconnect battery from RTC
Example ioctl (fd, DISCBATT);

Command 0x29 pci_set_clk_val
Description Sets the clock value of the TFP
Example ioctl (fd, SETCLKVAL, clk_val);

Command 0x33 pci_set_gps_tm_fmt
Description Sets GPS or UTC time format
Example ioctl (fd, SETGPSTMFMT, UTC_FMT);

Command 0x34 pci_set_gps_mode_flg
Description Enable or disable the GPS mode flag
Example ioctl (fd, SETGPSTMFMT, GPS_FLG_ENA);

Command 0x40 pci_set_local_off_flg
Description Enable or disable the local time offset
Example ioctl (fd, SETLOCTMFLG, LOC_OFF_DIS);

INSTALLATION

Datum Inc. bc635PCI Solaris Developer’s Kit 4-5

Command 0x42 pci_set_yr_auto_inc_flg
Description Enable or disable the year automatic increment
Example ioctl (fd, SETYRINCFLG, YR_INC_DIS);

Command 0x19 pci_req_time_settings
Description Request time setttings
Example /* Get Timing Mode */

get.arg = GETDATA_MODE;
if (!((ioctl (fd, GETDATA, &get)) < 0))
 mode = (int)get.data.tmode;

Command 0x19 pci_req_clock_settings
Description Requests clock settings
Example /* Get Clock Source */

get.arg = GETDATA_CLKSRC;
if (!((ioctl (fd, GETDATA, &get)) < 0))
 clk_scr = (u_char)get.data.clksrc;

Command 0x19 pci_req_offsets_settings
Description Requests offsets settings
Example /* Get Local Time Offset */

get.arg = GETDATA_LOCTMOFF;
if (!((ioctl (fd, GETDATA, &get)) < 0))
{
loc_off = (float)get.data.locoff.locoff;
loc_off_flg = (int)get.data.locoff.locflg;
}

Command 0x19 pci_req_utc_info
Description Request UTC Information
Example /* Get UTC Info */

get.arg = GETDATA_UTCINFO;
ioctl (fd, GETDATA, &get);

Command
0xF4,0xF5,
0xF6, 0xFE

pci_req_assembly

Description Request Model, Serial Number, Assembly Number and Hardware FAB
Example /* Get TFP Model */

CHAPTER FOUR

4-6 bc635PCI Solaris Developer’s Kit Datum Inc

get.arg = GETDATA_TFPMODEL;
ioctl (fd, GETDATA, &get);

Command 0x4F pci_req_fw_ver
Description Request firmware version
Example /* Get Firmware Version */

get.arg = GETDATA_DTFW;
ioctl (fd, GETDATA, &get);

INSTALLATION

Datum Inc. bc635PCI Solaris Developer’s Kit 4-7

4.2 EXAMPLE 1: GPS PACKET 46 – HEALTH PACKAT SAMPLE

int i;
char rbuf[STFP_MAX_READ];

printf ("\n\nGPS PACKET 46 - GPS HEALTH PACKET\n\n");
ioctl (fd, REQGPSPACKET, 0x46);
read (fd, rbuf, STFP_MAX_READ);

printf ("Raw Data: ");
for (i = 0; i < 18; i++)

printf ("%02X ", rbuf[i] & 0xff);

printf ("\nID: \t%02X \nStatus: 0x%02X \nError: \t0x%02X\n",
rbuf[1] & 0xff, rbuf[2] & 0xff, rbuf[3] & 0xff);

	Table of Contents
	CHAPTER ONE

	Driver Library Definitions
	Program Functions
	Open Device
	Close Device
	Read Time
	Read Event
	Strobe Output
	Input Mode
	Time Code Format
	Frequency Output
	Time Register Format
	Heartbeat/Periodic
	Set Year
	Set Time
	Propogation Delay
	SW Reset
	TC Output Format
	Clock Source
	Local Time Offset
	Leap Second
	Jamsync Control
	DAC Control
	Gain Control
	RTC Synchronization
	Disconnect RTC Battery
	Slew Time
	GPS or UTC
	GPS Mode Select
	IEEE 1344 Local Time
	Year Increment
	Request Data
	Clock Settings
	Offsets
	UTC Info
	HW Data
	FW Data

	GPS Example
	Interrupt Example

